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Abstract: Let G be a transitive permutation group acting on a finite set Ω. For a point α of Ω, the set of the images of G 

acting on α is called the orbit of α under G and is denoted by α
G
, and the set of elements in G which fix α is called the stabilizer 

of α in G and is denoted by Gα. We can get some new orbits by using the natural action of the stabilizer Gα on Ω, and then we 

can define the suborbit of G. The suborbits of G on Ω are defined as the orbits of a point stabilizer on Ω. The number of 

suborbits is called the rank of G and the length of suborbits is called the subdegree of G. For finite primitive groups, the study 

of the rank and subdegrees of group has a long history. In this paper, we construct a class of imprimitive permutation groups of 

rank 4 or 5 by using imprimitive action and product action of wreath product, determine the number and the length of the 

suborbits, and extend the results to imprimitive permutation groups of rank m+1 and 2
n
+1, where m and n are positive integers. 
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1. Introduction 

Let G be a transitive permutation group acting on a finite 

set Ω. The suborbits of G on Ω are defined to be the orbits of 

the stabilizer Gα acting on Ω, where α∈Ω. The number of 

the suborbits is called the rank of G, and the lengths of the 

suborbits are called the subdegrees of G. For finite primitive 

groups, the study of the rank and subdegrees of such groups 

has a fairly long history, and the research mainly focuses on 

the case of small ranks and subdegrees. For this topic, many 

scholars have obtained some good results. It is clear that the 

rank of a transitive permutation group G is 2 if and only if G 

is 2-transitive. With the help of the finite simple group 

classification theorem, all finite 2-transitive permutation 

groups have been completely determined. Therefore, the 

study of the ranks of finite primitive groups is mainly 

focused the on case of rank ≥ 3. 

For a finite transitive group G of rank 3, Higman's review 

article [4] is a good resource for early work. The research on 

this problem is often combined with the research of the 

suborbits of the transitive permutation groups. When the 

length of an suborbit is large, this kind of problem is very 

difficult to study. Therefore the work so far has been focused 

mainly on the cases of suborbit ≤ 5. 

If a primitive permutation group has non-trivial suborbit of 

length 1, it must be a regular transitive group of prime degree. 

If a primitive permutation group has a suborbit of length 2, it 

must be a dihedral group of prime degree, see [8, Theorem 5] 

for details. For a primitive permutation group has a suborbit of 

length 3, the structure of the groups becomes very complex. 

Using the work of Sim [11], Wong [16] has completed the 

classification of these groups. For primitive permutation 

groups have a suborbit of length 4, the structure of the groups 

becomes more complex. Sim [11] and Quirin [10] obtained 

part of the result regarding the case. Finally J. Wang used the 

classification theorem of finite simple group to obtain a 

complete classification for these groups in literature [13]. In 

[6], Li, Liu and Marusic presented a new charaterization of 

primitive groups with suborbits of length 3 and 4, and the 

result is used to give a complete description of symmetric 

graphs of valency 3 or 4. For primitive permutation groups 

containg a suborbit of length 5, J. Wang has obtained partial 

results in [14, 15]. Recently in 2018, the classification of 

corresponding primitive groups was completed by Fawcett, 

Giudic, Li, Praeger, et, al in literature [3]. 

In recent years, much more attention has also been paid to 

the study of the ranks and subdegrees of imprimitive 

permutation groups. In this paper, we construct a class of 

imprimitive permutation groups with rank 4 or 5, determine 

the length of the subdegrees, and extend the results to 
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imprimitive permutation groups with rank m+1 and 2
n
+1, 

where m and n are positive integers. 

2. Preliminaries 

In this section we present some of the basic concepts and 

results of permutation groups which will be used in this paer. 

For more general information about permutation groups, see 

Dixon’s classical monograph [2]. The following notation and 

terminology are come from [2]. 

 Definition 2.1 Let G be a group and Ω be a nonempty set, 

and suppose that for each α ∈ Ω and each x G∈ we have 

defined an element of Ω denoted by α
x
. Then we say that this 

defines an action of G on Ω (or G acting on Ω) if: 

(1) α
1
= α for all α ∈ Ω (Where 1 denotes the identity 

element of G; and, 

(2) (α
x
)

y
= α

xy
 for allα ∈ Ω and x,y G∈ . 

Definition 2.2 When a group G acts on a set Ω, a typical 

point α is moved by elements of G to various other points. 

The set of the images of G acting on C is called the orbit of α 

under G, and we denote it by 

α
G
: = {α

x｜x ∈ G}. 

Definition 2.3 A group G acting on a set Ω is said to be 

transitive on Ω If it has only one orbit, and so
Gα = Ω for all 

α ∈ Ω . 

Definition 2.4 Let G be a group acting transitively on a set 

Ω, A nonempty subset ∆of Ω is called a block for G if for 

each x G∈ either
x∆ = ∆ or

x∆ ∆ =∩ Ø. 

A group acting transitively on Ω has Ω and the singletons 

{α} (α ∈ Ω ) as blocks; these blocks are called the trivial 

blocks. Any other blocks (if any) are called nontrivial. 

Definition 2.5 Let G be a group which acts transitively on 

Ω. We say that the group is primitive if G has no nontrivial 

block on Ω; Otherwise G is called imprimitive. 

Definition 2.6 Let G be a group acting transitively on a set 

Ω. Then G induces a natural action on the Cartesian product 

Ω×Ω = {(α, β)｜α, β ∈ Ω}. The orbits of G on this set are 

called the orbitals of G on Ω. 

There is a close relationship between the orbitals of G and 

the orbits of the point stabilizers of G. For each orbital ∆ of G 

and each α ∈Ω , we define 

( ) ( ){ }, ,α β β α β
∆

∆ = ∈Ω ∈∆  

It is easy to verify that the mapping ∆ ⟼ ∆(α) is a 

bijection from the set of orbitals of G onto the set of orbits of 

Gα. In particular, the number of orbitals is equel to the 

number of orbits of G; this number is called the rank of G. 

An orbit of Gα for any α ∈Ω is called a suborbit of G. 

3. Imprimitive Permutation Group of 

Rank 4 or 5 

For research the permutation groups in this paper, we need 

to introduce the concepts of wreath product and semiproduct 

of groups. The basic concepts are fiven as follows. 

The notion of a semidirect product of two groups 

generalizes the idea of a direct product. 

Definition 3.1 Let H and K which respects the group 

structure on K; so for each x H∈ the mapping u xu֏ is an 

automorphism of K. Put 

( ){ }, ,G u x u K x H
∆
= ∈ ∈  

and define a product on G by 

( ) ( ) ( )-1

, , , ,for all (u,x),(v,y) G.xu x v y uv xy= ∈  

Definition 3.2 Let Γ = {1, 2, ⋯, m} and ∆ be a nonempty, 

and Fun(Γ, ∆) means a set of all mapping of Γ to ∆, then it 

can denoted by ∆
m
. If ∆ = K is a group, the Fun(Γ, K) = K

m
 

means the direct product of K, Let H ≤ Sm, then H have a 

naturally action on Γ = {1, 2,…, m}, so we can define an 

action of H on Fun(Γ, K) as follow: 

For each ( )1 2, , , Km
mk k k ∈⋯ , Let x H∈ and define: 

( ) ( )y
-1

1 2 1 2
, , , , , , , where ,y y

x

m m
k k k k k k y x= =⋯ ⋯  

Then we can obtain a semidirect product Fun(Γ, K): H = 

K
m
: H, which is called wreath product of K and H and 

denoted by Kwr HΓ . 

Our first result is as follows. 

Theorem 3.3 The group G = Sn wr S3 and its subgroups Sn 

wr C3, (Sn wr S3) ∩ An, and (Sn wr C3) ∩ An all have an 

imprimitive action of degree 3n, with rank 4. 

Proof Let Ω = {1, 2,…, 3n}, ∆1 = {1, 2,…, n}, ∆2 = {n + 1, 

2,…, 2n}, ∆3 = {2n + 1, 2n + 2,…, 3n}. And let g = (1, n + 1, 

2n + 1)(2, n + 2, 2n + 2)(n, 2n, 3n). 

Then (∆1)
g
 = ∆2, (∆2)

g
 = ∆3, (∆3)

g
 = ∆1, so g interchange∆1, 

∆2, ∆3, then g interchange Sym(∆1), Sym(∆2), Sym(∆3). 

Therefore, 〈g〉acting on the group Sym(∆1), Sym(∆2), 

Sym(∆3), so you can do the semiproduct of 〈g〉and Sym(∆1), 

Sym(∆2), Sym(∆3). 

Let 

( ) ( ) ( )1 2 3 ,G Sym Sym Sym g= ∆ × ∆ × ∆  

( ) ( ) ( )( )1 2 3 :Sym Sym Sym g= ∆ × ∆ × ∆
 

3.nS wrC=  

Now it is easy to see that G act on Ω transitively, but G is 

not a primitive group, because it has nontrivial blocks ∆1, ∆2, 

∆3. 

Next we consider the following group: 

{ } { } { }1 -12,3, , 1, 2, ,2 2 1,2 2, ,3 n n nn n n n n n n
G S S S S S S+ + + += × × = × ×⋯ ⋯ ⋯ ， 

We have 
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{ }11 1G = ， 

{ }12 2,3, ,G n= ⋯ ， 

( ) { }11 1, 2, ,2
G

n n n n+ = + + ⋯ ，  

( ) { }12 1 2 1, 2, ,3 .
G

n n n n+ = + + ⋯  

So the rank of G is 4 and the subdegrees of G are 1, n-1, n, 

n. 

For the group 3 3n nG S wrC K S wrS= < = , it is easy to see 

that K also acts on Ω imprimitively and the orbitals of K acting 

on Ω has the some form as the orbitals of G acting on Ω. So 

the rank of K is 4 and the subdegrees of K are 1, n-1, n, n, too. 

From the above proof, it can be seen that as long as the 

subgroup of K satisfies the condition of fixing the set

1 2 3{ , , }∆ ∆ ∆ , then the orbitals of its acting on Ω has the 

some form as the orbitals of G acting on Ω. Therefore, the 

subgroups (Sn wr S3) ∩ An and (Sn wr C3) ∩ An are all 

imprimitively act on the Ω and all of their ranks are 4 and all 

of their subdegrees are 1, n-1, n, n. 

Corollary 3.4 For m ≥ 2, the group G n mS wrS= and its 

subgroup n mS wrC , ( )n m mS wr S A∩ , ( )n m nS wrC A∩ are 

imprimitively act on Ω = {1, 2,…, mn}. And their rank are all 

m+1, their subdegree all are 1, n-1, 

-1

, ,

m

n n n⋯����� . In addition, 

when n is even or m is odd, the rank of its subgroup 

n mS wr A ， ( )An m nS wr A∩ are all m+1 and their subdegree 

all are 1, n-1, 

-1

, , ,

m

n n n⋯����� . 

Proof Let ∆1 = {1, 2,…, n}, ∆2 = {n + 1, 2,…, 2n},…, ∆m = 

{(m - 1)n + 1, (m - 1)n + 2,…, mn}. And let g = (1, n + 

1,…,(m - 1)n + 1)(2, n + 2,…,(m - 1)n + 2)(n, 2n,…, mn).  

G: = 〈(Sym(∆1) × Sym(∆2) × … × Sym(∆m)), g〉= Sn wr 

Cm. 

Obviously G is imprimitively on Ω with nontrivial block 

∆1, ∆2,…, ∆m. 

Then we have, 

1 1n n nG S S S−= × ×  

{ }11 1 ,G =  

{ }12 2,3, , ,G n= ⋯  

( ) { }11 1, 2, ,2 ,
G

n n n n+ = + + ⋯  

( ) { }12 1 2 1,2 2, ,3 ,
G

n n n n+ = + + ⋯  

⋯ 

{ }1(( -1) 1,( -1) 2, , ) ( -1) 1,( -1) 2, , .Gm n m n mn m n m n mn+ + = + +⋯ ⋯  

Therefore the rank of G is m+1 and the subdegree of G is 

-1

1 -1, , , ,

m

n n n n⋯�����， . 

While the group n m n mG S wrC K S wrS= ∈ = ，it is easy to 

show that the group K imprimitively act on Ω, and the orbit 

of its point stabilizer acting on Ω has some form with G. 

Therefore the rank of K is m + 1 and the subdegree of K is 1, 

n-1, 

-1

, , ,

m

n n n⋯����� . 

Otherwise, the subgroups (Sn wr Sm) ∩ An, (Sn wr Cm) ∩ 

An, are imprimitively act on Ω and the orbit of its point 

stabilizer acting on Ω has some form with G. Therefore the 

rank of K is m+1 and the subdegree of K is 1, n-1, 

-1

, , ,

m

n n n⋯����� . 

when n is even or m is old, let g = (1, n + 1,…, (m - 1)n + 

1)(2, n + 2,…, (m - 1)n + 2) … (n, 2n,…, mn) ∈ Am.

( )( ) ( )( ) ( )1, 1, , -1 1 2, 2, , -1 2 ,2 , , Amg n m n n m n n n mn= + + + + ∈⋯ ⋯ ⋯ ⋯
 

Then the subgroup Sn wr Am and (Sn wr Am) ∩ An all are 

imprimitively act on Ω, and the orbit of its point stabilizer 

acting on Ω has some form with G. Therefore the rank of K is 

m+1 and the subdegree of K is 1, n-1, 

-1

, , ,

m

n n n⋯����� . 

Theorem 3.5 The group m mS wrS  has an imprimitive 

action of degree m
3
 with rank 5, and the subdegrees are 1, 

m-1, m-1, (m-1)(m-1), m
2
(m-1). 

Proof Let ∆ = {1, 2,…, m} and Ω = ∆×∆×∆ . The action 

of group m mG S wrS= in Ω is as follows: 

1 2( , , , , )
i, , ) ( , , )m k kg g g h g g hj k i j k=⋯（ , 

where 1 2i, , ; , , , ;m m mj k g g g S h S∈∆ ∈ ∈⋯ . 

Let α = (1, 1, 1) ∈ Ω, then the stabilizer of α in G is 

{ }1
1 2( , , , , ) 1 1 1

g h
mG L g g g hα = = = =⋯ . 

For the integer i>1, we have 

{ } { } 2(1, , ) (1 , , ,1 1 ( , , ) 1 ( -1),k kg gL h h
k mj k j k g S s t v v m m= ∈ = = ∈ =

 

{ } { }1 1 1(i, ,1) ( , ,1 1 1 1 ( , ,1) 1, 1 ( -1)( -1),
g g gL h hj i j s t s t m m= = = = ∈ ∈ =

 

{ } { }1 1 1(i,1,1) ( ,1 ,1 1 1 1 ( ,1,1) 1 ( -1)
g g gL h hi s s m= = = = ∈ =
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{ } { }1 1 1(1, ,1) (1 , ,1 1 1 1 (1, ,1) 1 ( -1)
g g gL h hj j t t m= = = = ∈ =

 

so the rank of G is 5 and the subdegree is 1, m-1, m-1, 

(m-1)(m-1), m
2
(m-1). 

Corollary 3.6 For n<m, the group G m mS wrS  has an 

imprimitive action of degree m
n
 with rank 2n+1. 

Proof Let ∆ = {1, 2, ⋯, n}, and

n

Ω = ∆ × ∆ × × ∆⋯������� . The 

action of group m mG S wrS= in Ω is as follow: 

1 2( , , , , )
1 2 1 2 -1i , , , ) ( , , , , )k k km g g gg g g h h

n nni i i i i i=⋯⋯ ⋯（ , 

where 1 2 n 1 2i , , , ; , , , ;m m mi i g g g S h S∈∆ ∈ ∈⋯ ⋯ . 

Let (1,1, ,1)

n

α = ∈Ω⋯
�����

, then the stabilizer of α in G is  

{ }1
1 2( , , , , ) 1 1 1

g h
mG L g g g hα = = = =⋯ . 

For the integer ij>1, j=1, 2,…, n, we have, 

｜(1, i2, ⋯, in)
L｜ 

= ｜{1
x
, (i2)

x
, ⋯, (in - 1)

x｜x = gn ∈ Sm, 1
h
 = 1}｜ 

= ｜{(j1, j2, jn)｜jn≠1}｜ 

= m
(n - 1)

(m - 1). 

Now consider the case of jn=1, according to the proof 

process of theorem 3.5, if the number and position of non-1 

in i1, i2,…, in-1 are different, they will belongs to different 

suborbit in G. 

When you have 0 elements equal to 1 in i1, i2,…, in-1, there 

are 0
-1nC  suborbits of length 

-1

( -1)( -1) ( -1)

n

m m m⋯
���������

; when you 

have 1 elements equal to 1 in i1, i2,…, in-1, there are 1
-1nC  

suborbits of length 

-2

( -1)( -1) ( -1)

n

m m m⋯
���������

,…, when you have 

n-2 elements equal to 1 in i1, i2,…, in-1, there are -2
n-1
nC  

suborbits of length ( -1)m , so the rank of G is 2
n
+1. 

4. Conclusion 

According to the proof in the third part, we have a 

imprimitive groups Sn wr S3, Sn wr C3, (Sn wr S3) ∩ An, and 

(Sn wr C3) ∩ An with rank 4 acting on 3n points and a 

imprimitive group Sm wr Sm with rank 4 acting on m
3
 points, 

where m and n are positive integer. 
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