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Abstract: The fractional Laplacian is a nonlocal operator that appears in biology, in physic, in fluids dynamic, in financial
mathematics and probability. This paper deals with shape optimization problem associated to the fractional laplacian ∆s, 0 <
s < 1. We focus on functional of the form J(Ω) = j(Ω, uΩ) where uΩ is solution to the fractional laplacian. A brief review
of results related to fractional laplacian and fractional Sobolev spaces are first given. By a variational approach, we show the
existence of a weak solution uΩ belonging to the fractional Sobolev spaces Ds,2(Ω) of the boundary value problem considered.
Then, we study the existence of an optimal shape of the functional J(Ω) on the class of admissible sets O under constraints
volume. Finally, shape derivative of the functional is established by using Hadamard formula’s and an optimality condition is
also given.
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1. Introduction
In this paper, we are interested for shape optimization

problems using fractional laplacian problems. In other words,
we look for a domain Ω ⊂ RN , N ≥ 2 and a function uΩ

solutions to the problem

inf
Ω⊂RN , vol(Ω)=c, ∂Ω∈C2

J(Ω) = j(Ω, uΩ) (1)

where

J(Ω) =
C(N, 2)

2

∫
RN

∫
RN

|uΩ(x)− uΩ(y)|2

|x− y|N+2s
dxdy (2)

and uΩ is solution to{
(−∆)suΩ = f in Ω

u = 0 on RN\Ω.
(3)

where 0 < s < 1, Ω is an open bounded set of RN , N ≥ 2.
Shape optimization problems have always interested the

research community. A lot of work related to shape
optimization is topical today [14], [2], [4], [5], [7], [6]. Allaire

and Henrot [2] give a review on recent development in shape
optimization. In general, the functional J depends on Ω and
uΩ solution to a partial differential equation. In most of his
papers, the authors consider a domain-dependent functionals
with constraint a partial differential equation posed in Ω. In
general, the solution uΩ of this PDE belongs to a Sobolev
space. In this paper, we consider a functional J(Ω) depending
on Ω and uΩ solution to the fractional Laplacian. Dalibard and
Gerad- Varet in [12], showed that it is possible to calculate the
shape derivative of the functional considered in the case s = 1

2 .
In this work, we try to generalize the results for all 0 < s < 1.
We have the following the main result.

Theorem 1.1. Let J(Ω) be a functional given by (2) where
uΩ is solution to (3). Then there exists an open set Ω ⊂ RN
of class C2 with vol(Ω) = c satisfying

J(Ω) = inf
ω⊂RN , vol(ω)=c, ∂ω∈C2

J(ω)

Let’s consider, a small perturbation of the domain Ω in the
form Ωt = φt(Ω) where φt is a C1 diffeomorphism such that
φ0 = Id and ∂φt

∂t = V, where V ∈ W 1,∞(RN ,RN ). The
shape derivative of the function (2) is given by the following
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result.
Theorem 1.2. Let Ω ⊂ R2 be an open set of class C2, and

Ωt = φt(Ω) as below. Then the function J defined in Ωt by
(2) is differentiable and we have

(
dJf (Ωt)

dt

)
t=0

= C lim
k−→∞

∫
R2×R2

[
u0(x)u̇0(y)

(
χk(x+ y) + χk(x− y)− 2χk(x)

|y|2+2s

)]
dxdy

where u0 is solution to (26) and u̇0, the shape derivative of u0 is solution to{
(−∆)su̇0 = 0 in Ω

u̇0 = 0 on ∂Ω
(4)

The third result is given by
Theorem 1.3. Let f ∈ C∞(R2), and let

Jf (Ω) = inf
v∈Ds,2(Ω),v=0 on RN\Ω

(
< (−∆)sv, v >Ds,2(Ω)×Ds,2(Ω) −

∫
Ω

fv

)
. (5)

Let V ∈ C∞0 (R2), and (φt) be the flow associated with V ,
namely

φ̇t = V, φ0 = Id.

Let Ω be an open set with C∞ boundary, and let uΩ,f be the
unique minimizer of Jf (Ω), namely.(−∆)suΩ = f in Ω

uΩ = 0 on RN \ Ω
(6)

Then ∂snuΩ,f exists, and there exists an explicit constant k
such that (

dJf (Ωt)

dt

)
t=0

= k

∫
∂Ω

(∂snuΩ)
2
V.ndσ

More over, the optimal condition is given the following
result:

Theorem 1.4. Let Ω be the solution of the shape optimization
problem min{J(Ω, ω ∈ O} under the constraint uωsolution
to (22).

Then, there exists a Lagrange multiplier λ = λ(Ω) such that

k (∂snuΩ)
2

+ λ(Ω) = 0, (7)

where k is a constant.
The paper is organized as follows. In section 2, some

preliminaries results concerning the fractional Laplacian
problem and fractional Sobolev spaces are given. In section 3 ,
we give the main results of this paper and its proofs: existence
result for the shape optimization problem, shape derivative of
the functional and optimality condition. In section 4, we give
some concluding remarks and possible extension.

2. Preliminaries

In this section, we recall some results that will be useful to
in the following of the work.

2.1. On the Fractional Problem

Definition 2.1. Let 0 < s < 1 and p ∈ [1,+∞[. We define
W s,p(Ω) as follows

W s,p(Ω) =

{
f ∈ Lp(Ω) :

| f(x)− f(y) |
| x− y |

N
p

+s
∈ Lp(Ω× Ω)

}

endowed with the usual norm

‖ f ‖W s,p(Ω)=

(∫
Ω

| f |p dx+ [f ]W s,p(Ω)

) 1
p

,

where the term

[f ]W s,p(Ω) =

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

) 1
p

is the so-called Gagliardo (semi) norm of f .

2.2. Sobolev Inequalities

We need the following results whose proof can be found in
[15] and [23].

Lemma 2.1. Let s ∈]0, 1[ and p ∈ [1,+∞[ such that sp <
N. Fixe T > 1, let N ′ ∈ Z and (ak)k a bounded non-negative
sequence with ak = 0 for any k ≥ N ′. Then :∑

k∈Z
a
N−sp
N

k T k ≤ C
∑

k∈Z,ak 6=0

ak+1a
−sp
N

k T k

with C = C(N, s, p, T ) > 0.
Lemma 2.2. Let s ∈]0, 1[ and p ∈ [1,+∞[ such that sp <

N. Let f ∈ L∞(RN ) with compact support. For any k ∈ Z
let:

ak := |{|f | > 2k}|

Then:∫
RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy ≥ C

∑
k∈Z,ak 6=0

ak+1a
−sp
N

k T k.
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with C = C(N, s, p) > 0.
Lemma 2.3. Let q ∈ [1,+∞[, let f : RN −→ R mesurable

function. For any n ∈ N, let:

fn(x) := max(min(f(x), n),−n) ∀x ∈ RN

Then:
lim

n−→+∞
||fn||Lq(RN) = ||f ||Lq(RN).

Theorem 2.1. : Let s ∈]0, 1[ and p ∈ [1,+∞[ such that
sp < N. Then there exists a positive constant C = C(N, s, p)
such that, for any mesurable and compactly supported function
f : RN −→ R, we have

‖ f ‖Lp∗(RN )≤ C
∫
RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy

Where p∗ = p ∗ (N, s) is the so-called fractional critical
exponent and it is equal to Np

N−sp . Consequently, the space
W s,p(RN ) is continuously embedded in Lq(RN ) for any q ∈
[p, p∗].

Proof. If∫
RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy = +∞

then nothing to show.
We then assume that∫

RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy < +∞

we have two cases:∗ If f ∈ L∞(RN ) so we set Ak = {|f | >
2k} and ak = |Ak|, we have:

‖ f ‖p
∗

Lp∗(RN )
=
∑
k∈Z

∫
Ak\Ak+1

|f |p
∗
dx

≤
∑
k∈Z

∫
Ak\Ak+1

(
2k+1

)p∗ ≤∑
k∈Z

((
2k+1

)p∗
ak

)
because:

Ak \Ak+1 ⊂ Ak =⇒ |Ak \Ak+1| ≤ |Ak| = ak

=⇒‖ f ‖p
∗

Lp∗(RN )
≤ 2p

(∑
k∈Z

2kp∗ak

) p
p∗

with
p

p∗
=
N − sp
N

= 1− sp

N
< 1,

then we have

‖ f ‖p
∗

Lp∗(RN )
≤ 2p

∑
k∈Z

2kp (ak)
N−sp
N

We set T = 2p and we apply the lemma 2.1, to obtain:

‖ f ‖p
∗

Lp∗(RN )
≤ C

∑
k∈Z,ak 6=0

ak+1 (ak)
−sp
N 2kp

with C = C(N, s, p).
Finally according to the lemma 2.2 we have:

‖ f ‖p
∗

Lp∗(RN )
≤ C

∫
RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy

with C = C(N, s, p) ∗ If f /∈ L∞(RN ), we set : fn :=
max(min(f(x), n) − n)∀x ∈ RN . So, the sequence (fn)n is
bounded, and moreover:

lim
n−→+∞

||fn||Lq(RN) = ||f ||Lq(RN) ∀ q ∈ [1,+∞[.

So according to the first case we have:

‖ fn ‖p
∗

Lp∗(RN )
≤ C

∫
RN

∫
RN

| fn(x)− fn(y) |p

| x− y |N+ps
dxdy

Moreover:

lim
n−→+∞

||fn||Lq(RN) = ||f ||Lq(RN)

and according to the dominated convergence theorem we have:

lim
n−→+∞

∫
RN

∫
RN

| fn(x)− fn(y) |p

| x− y |N+ps
dxdy

=

∫
RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy

which implies:

‖ f ‖p
∗

Lp∗(RN )
≤ C

∫
RN

∫
RN

| f(x)− f(y) |p

| x− y |N+ps
dxdy

with C = C(N, s, p).
The following theorems are useful for the proof of the

results in the next section. Their proofs are given in [15] and
[23].

Theorem 2.2. Let s ∈]0, 1[ and p ∈ [1,+∞[ such that
sp < N. Let Ω ⊆ RN be a domain for W s,p. Then there
exists a positive constant C = C(N, s, p,Ω) such that for any
function f ∈W s,p(Ω) we have

‖ f ‖Lq(Ω)≤ C ‖ f ‖W s,p(Ω),

for any q ∈ [p, p∗]; i.e., W s,p(Ω) is a continuous injection for
Lq(Ω) for any q ∈ [p, p∗].

Theorem 2.3. Let s ∈]0, 1[, p ∈ [1,+∞[ and q ∈ [1, p]. Let
Ω ⊂ RN be a bounded extension domain for W s,p and T be a
bounded subset of Lp. Suppose that

sup
f∈T

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

)
< +∞.

Then T is pre-compact in Lq.
Corollary 2.1. Let s ∈]0, 1[, p ∈ [1,+∞[ such that sp < N.

If q ∈ [1, p∗[, Ω ⊆ RN be a bounded extension domain for
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W s,p and T be a bounded subset of Lp. Suppose that

sup
f∈T

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

)
< +∞,

Then T is pre-compact in Lq.

Definition 2.2. Let f ∈ S(RN ) 0 < s < 1 and x ∈ RN , we define

(−∆)sf(x) = C(N, s) vp

(∫
RN

f(x)− f(y)

| x− y |N+2s
dy

)
with

C(N, s) =
4sΓ(s+ N

2 )

π
N
2 Γ(−s)

.

vp(f) is a principal value of f.
Lemma 2.4. Let 0 < s < 1 and let (−∆)s be the fractional Laplacian operator defined by (2.2) . Then for any f ∈ S(RN ),

(−∆)sf(x) = −1

2
C(N, s)

∫
RN

f(x+ y) + f(x− y)− 2f(x)

| y |N+2s
dy, ∀x ∈ RN .

Lemma 2.5. Let f ∈ C∞c (RN ), we have(
(x, y) 7−→ f(x+ y) + f(x− y)− 2f(x)

| y |N+2s

)
∈ L1(R2N ).

We define

L1
s =

{
f : RN −→ R :

∫
RN

| f(x) |
| x− y |N+2s

dx < +∞
}
. (8)

Definition 2.3. Let Ω ⊂ RN be an open set u ∈ L1
s, the distribution (−∆)su is defined by:

< (−∆)su, ϕ >=

∫
RN

u(−∆)sϕdx, ∀ ϕ ∈ C∞c (Ω). (9)

Saying that (−∆)su = f in D′(Ω), is equivalent to the very weak formulation∫
RN

u(−∆)sϕdx =

∫
Ω

fϕdx, ∀ ϕ ∈ C∞c (Ω). (10)

Definition 2.4. We define Ds,2(Ω) = C∞c (Ω)
‖.‖Hs , as the completion of C∞c (Ω), which is an Hilbert espace with respect to

the norm:

‖ ϕ ‖Ds,2(Ω)=

(∫
RN

∫
RN

[ϕ(x)− ϕ(y)]2

| x− y |N+2s
dxdy

) 1
2

. (11)

If u ∈ Ds,2(Ω) ⊂ L1
s satisfies: (−∆)su = f in D′(Ω), we have the weak formulation:

< (−∆)su, ϕ >Ds,2(Ω)=

∫
Ω

fϕdx, ∀ ϕ ∈ D(Ω), (12)

where

< u,ϕ >Ds,2(Ω)= C(N, s)

∫
RN

∫
RN

(u(x)− u(y))(ϕ(x)− ϕ(y))

| x− y |N+2s
dxdy.

Let Ω ⊂ RN a bounded open set with Lipschitz boundary, and 0 < s < 1. Note here for the space of smooth functions with
compact support, we take the notation C∞c instead of C∞0 . Consider the bilinear form:

<,>Ds,2 : C∞c (Ω)× C∞c (Ω) −→ R

(u, v) 7→
∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

| x− y |N+2s
dxdy
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which is a scaler product on C∞c (Ω). We recall that the Hilbert space Ds,2(Ω) the completion of C∞c (Ω).
Lemma 2.6. If Ω is a bounded Lipschitz open set

Ds,2(Ω) =
{
u ∈ Hs(RN ), such that u = 0 on RN \ Ω

}
.

Proposition 2.1. Let 0 < s < 1 and Ω a bounded open set
subset of RN . Let f : Ω −→ R be a mesurable function
with compact support. Then, there exists a positive constant
C = C(N, s,Ω) depending on N , s and Ω such that

‖ f ‖L2(Ω)≤ C ‖ f ‖Ds,2(Ω) .

Definition 2.5. Oe We say that an open set Ω satisfies the
ε−cone property if forall x ∈ ∂Ω, there exists a unit vector ξx,
such that ∀y ∈ Ω ∩B(x, ε), C(y, ξx, ε) ⊂ Ω.

We denote by θε the following set:

Oε = {Ω ouvert Ω ⊂ D,Ω a la propriété du ε− cône} (13)

In what the follows, we denote Oε the set of all open
bounded sets Ω satisfying the ε− cône property. We have also
the following compactness result.

Lemma 2.7. : Let K be a compact and B a bounded open of
RN . Let Ωn ∈ Oε be a sequence of open sets with Ωn ⊂ K ⊂
B. Then there is an open Ω verifying the ownership of the ε
-cone and an extracted sequence Ωnk such as

Ωnk H−−−−→Ω, χωnk L1p.p
−−−−−−−→

χΩ,

Ωnk H−−−−→Ω, ∂Ωnk H−−−−→∂Ω.

3. Shape Derivative of the Functional
The objective of this section is to prove that the shape

optimization problem (1)-(2) admits a solution Ω, when uΩ

is solution to {
(−∆)suΩ = f sur Ω
u = 0 sur RN\Ω.

We get also optimal condition. Before going further, we first
prove existence of uniqueness of the solution uΩ to (3).

3.1. Existence of Solution to (3)

These types of problems were first studied by Caffarelli and
Sylvestre [9] and references there in, in the case s = 1

2 . The
regularity of the solution to this problem is also studied by

many authors. Cafarelli et al. [11] prove interior and boundary
Schauder regularity estimates depending on the smoothness of
the coefficients. Niang [16], proved in his thesis , by using
a blow up and compactness analysis, a boundary regularity
for the solution to the mixed boundary degenerate elliptic
equation. Silvestre in [21] proved also some regularities results
of the obstacle problems for a fractionnal power. In this work,
we propose to generalize these problems by using a variational
approach in the case where 0 < s < 1.{

(−∆)suΩ = f sur Ω
u = 0 sur RN\Ω.

We begin this section by proving that it exists a solution to
(3). We first use the Euler Lagrange equation of (3) in order
to transform it into a functional J(u). We have the following
theorem

Theorem 3.1. Let Ω ⊂ RN , N ≥ 1 be an open set of class
C2, and s ∈]0, 1[. Then there exist a unique weak solution
u ∈ Ds,2(Ω) of (3).

In a addition, this solution satisfies the following problem

J(u) = inf
v∈Ds,2

J(v, v) (14)

with

J(u, v) =< u, v >Ds,2(Ω) −
∫

Ω

f(x)v(x)dx. (15)

Before giving the proof of this theorem, we give the
following lemma, which is usefull for the proof.

Lemma 3.1. Let (uk)k≥1 ⊂ Ds,2(Ω) be a minimizing
sequence of (15), i.e.

lim
k−→+∞

J(uk, uk) = inf
v∈Ds,2(Ω)

J(v, v) = m (16)

then (uk)k≥1 is bounded in Ds,2(Ω).
Proof. Let (uk)k≥1 ⊂ Ds,2(Ω) satisfying (16). Then, there

exists n0 ∈ N∗ such that for k ≥ n0,

m ≤ J(uk, uk) ≤ m+
1

k
, ∀k ≥ 1.

From (15) we have by using schwartz inequality’s∫
Ω

fukdx ≤‖ f ‖L2(Ω)‖ uk ‖L2(Ω)≤
1

2
‖ f ‖2L2(Ω) +

1

2
‖ uk ‖2L2(Ω)

From this last inequality, we get

=⇒ J(uk, uk) ≥ < uk, uk >Ds,2(Ω) −
1

2
‖ f ‖2L2(Ω) −

1

2
‖ uk ‖2L2(Ω)
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which gives

‖ uk ‖2Ds,2(Ω)≤ J(uk, uk) +
1

2
‖ f ‖2L2(Ω) +

1

2
‖ uk ‖2L2(Ω) . (17)

Taking into account the fact that f ∈ L2(Ω), the sequence uk ∈ L2(Ω) and the functional J(uk, uk) ≤ m + 1
k , then for k

large enough, we show that the quantity on the right hand side of (17) is bounded. Thus, we show that the term in the left hand
side of (17) is the norm ||u||Ds,k(Ω is bounded by a constant which depends only on f and m.

Proof. of Theorem 3.1: Multiplying (3) by a test function v ∈ Ds,2(Ω) and integrating over Ω we get∫
Ω

(−∆)suΩvdx =

∫
Ω

fvdx

Then we have ∫
RN

∫
RN

(uΩ(x)− uΩ(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω

f(x)v(x)dx (18)

Let

a(u, v) =

∫
RN

∫
RN

(uΩ(x)− uΩ(y))(v(x)− v(y))

|x− y|N+2s
dxdy (19)

and
l(v) =

∫
Ω

f(x)v(x)dx (20)

It is therefore very difficult to find the existence of a solution u ∈ Ds,2(Ω) such that a(u, v) = l(v) for all v ∈ Ds,2(Ω), using
the Lax Milgram theorem, because of the nonlinearity of the term (−∆)s. To overcome this difficulty, we consider the following
functional.

J(uΩ, v) =

∫
RN

∫
RN

(uΩ(x)− uΩ(y))(v(x)− v(y))

|x− y|N+2s
dxdy −

∫
Ω

f(x)v(x)dx (21)

The objective will be to show that the functional J defined on Ds,2(Ω) × Ds,2(Ω) by (21) is well defined and a solution u
of the problem min{J(uΩ, uΩ), uΩ ∈ Ds,2(Ω)} is a weak solution of (3). For that, let’s start by showing the functional J is
reduced and does not reach −∞. We have:

| J(u, v) | =
∣∣∣∣∫

R2N

(u(x)− u(y))(v(x)− v(y))

| x− y |N+2s
dxdy −

∫
Ω

f(x)v(x)dx

∣∣∣∣ > −∞
| J(u, v) | ≤

(∫
R2N

(| u(x)− u(y) |)2

| x− y |N+2s

) 1
2
(∫

R2N

| (v(x)− v(y) |)2

| x− y |N+2s

) 1
2

+

∫
Ω

|f(x)v(x)|

| J(u, v) | ≤‖ u ‖Ds,2(Ω)‖ v ‖Ds,2(Ω) + ‖ f ‖L2(Ω)‖ v ‖L2(Ω) .

We recall that, there exists a constant C(N, s,Ω) such that ‖ u ‖L2(Ω)≤ C(N, s,Ω) ‖ u ‖Ds,2(Ω)

Then we have

| J(u, v) |≤‖ u ‖Ds,2(Ω)‖ v ‖Ds,2(Ω) + ‖ f ‖L2(Ω)‖ v ‖L2(Ω)

| J(u, v) |≤‖ u ‖Ds,2(Ω)‖ v ‖Ds,2(Ω) +[C2(N, s,Ω) ‖ f ‖Ds,2(Ω)‖ v ‖Ds,2(Ω)]

If uΩk = uk is a minimizing sequence, then by lemma 3.1, uk is bounded in Ds,2, there exists a sub-sequence (ukl)l≥1 of
(uk)k≥1 such that

ukl ⇀ u ∈ Ds,2(Ω), ukl −→ u ∈ L2(Ω) and ukl ⇀ u ∈ L2(Ω), when l −→∞.

In consequence:

J(ukl , ukl) =

∫
R2N

| (ukl(x)− ukl(y)) |2

| x− y |N+2s
dxdy −

∫
Ω

fukldx ≤ m+ ε, ∀ε ≥ 0.

Or ∫
R2N

| (ukl(x)− ukl(y)) |2

| x− y |N+2s
dxdy ≤

∫
Ω

fukldx+m+ ε, ∀ε ≥ 0.
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Passing to the limit in the second member of the above inequality, we get∫
R2N

| (ukl(x)− ukl(y)) |2

| x− y |N+2s
dxdy ≤

∫
Ω

fudx+m+ ε, ∀ε ≥ 0.

Therefore, passing to the milit, wheh k → +∞ we have∫
R2N

| u(x)− u(y) |2

| x− y |N+2s
dxdy ≤

∫
Ω

fudx+m+ ε, ∀ε ≥ 0.

From this inequality, we have

J(u, u) =

∫
R2N

| u(x)− u(y) |2

| x− y |N+2s
dxdy −

∫
Ω

fudx ≤ m+ ε, ∀ε ≥ 0.

So, we have,
J(u, u) ≤ m =⇒ J(u, u) = m.

Then, the functional J admits a minimum u ∈ Ds,2(Ω). In the following, we calculate the Frechet derivative of the functional
J(u, u). Let t ∈ R and u, v ∈ Ds,2(Ω) :

J(u+ tv, u+ tv) =
1

2
< u+ tv, u+ tv >Ds,2(Ω) −

∫
Ω

f(u+ tv)

=
1

2

(
< u, u >Ds,2(Ω) +2t < u, v >Ds,2(Ω) +t2 < v, v >Ds,2(Ω)

)
−
∫

Ω

fu− t
∫

Ω

fvdx

=
1

2
< u, u >Ds,2(Ω) +t < u, v >Ds,2(Ω) +

1

2
t2 < v, v >Ds,2(Ω) −

∫
Ω

fudx− t
∫

Ω

fvdx

=
1

2
< u, u >Ds,2(Ω) −

∫
Ω

fudx+ t < u, v >Ds,2(Ω) +
1

2
t2 < v, v >Ds,2(Ω) −t

∫
Ω

fvdx

J(u+ tv, u+ tv) = J(u, u) + t < u, v >Ds,2(Ω) +
1

2
t2 < v, v >Ds,2(Ω) −t

∫
Ω

fvdx

J(u+ tv, u+ tv)− J(u, u)

t
=< u, v >Ds,2(Ω) +

1

2
t < v, v >Ds,2(Ω) −

∫
Ω

fvdx

Taking the limit as t→ 0 we get:
J ′(u)t =< (−∆)suΩ − f, v >

Moreover, J(u) = min (J(v)) then J ′(u) = 0, then

(−∆)suΩ − f = 0 =⇒ (−∆)suΩ = f.

3.2. Existence of Optimal Shape

In this section we are interested in the existence of an
optimal shape Ω, minimizing the functional J defined by (2)
according to the set of domain O. Concerning the questions
of existence of optimal shape, one can refer to the work of
Allaire [1], A. Henrot and M. Pierre [14], Allaire and Henrot
[2], Allaire et al. [3], D. Bucur et al. [7], Buttazo et al. [6] and
O. Pironneau [17].
In these various works, the authors cited above use various
shape functionals. These functionals generally depend on a
function uΩ solution of a certain partial differential equation.
In this present work, uΩ is the solution of a non-fractional
partial differential equation. We try to do the same work but in
the fractional case using a functional J(Ω) and uΩ is a solution

of a fractional type equation. Thus we have the following
result:

Theorem 3.2. Let O = {ω ⊂ RN , vol(ω) = c, ∂ω ∈ C2},
and J defined by (2). Then there exists a domain Ω ∈ O such
that

J(Ω) = inf
ω∈O

J(ω)

under the constraints{
(−∆)suω = f sur ω
u = 0 sur RN\ω. (22)

Proof. The functional J(Ω) defined by (2) is positive
because uΩ i solution of (22 )belong to Ds,2(Ω). It also does
not expect the +∞ value.
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0 ≤ J(Ω) =
C(N, s)

2

∫
R2N

(u(x)− u(y))(u(x)− u(y))

| x− y |N+2s
dxdy

=
C(N, s)

2
||u||Ds,2(Ω) < +∞.

Hence J is bounded.
Let m = infΩ∈O J(Ω), so there exists a minimizing sequence (Ωn)n∈N ⊂ O such that

J(Ωn) −→ m = inf J(Ω).

Since Ωn ⊂ O, there exists a compact set K such that Ω̄n ⊂ K. Then according to the compactness lemma 2.7, there is an
open set Ω, with |Ωn| = c and an extracted sequence Ωnk such that Ωnk H−−−−→Ω and χΩnk

p.p
−→

χΩ

It remains to show that:
lim J(Ωnk) = J(Ω) = inf

Ω∈Oε ouOad
J(Ω).

In Ωnk , uΩk is solution to {
(−∆)suΩnk

= f in Ωnk
uΩnk

= 0 in RN\Ωnk .
(23)

Multiplying (23) by a test function v = vΩ ∈ Ds,2(Ω) and integrating, we get∫
R2N

(uΩnk
(x)− uΩnk

(y))(vΩ(x)− vΩ(y))

| x− y |N+2s
dxdy =

∫
Ωnk

f(x)vΩnk
(x)dx for ∀ v ∈ Ds,2(Ω). (24)

And from Lemma 3.1, the sequence uΩnk
is bounded in Ds,2(Ωnk).

Since (uΩnk
) is bounded in Ds,2(Ωnk), there exists u∗Ω ∈ Ds,2(Ω) and an extracted subsequence (uΩnk

)k≥1 of (uΩnk
) still

denoted by(uΩnk
)k≥1 such that:

(uΩnk
)k≥1 ⇀ u∗Ω ∈ Ds,2(Ω),

(uΩnk
)k≥1 −→ u∗Ω ∈ L2(Ω)

and
(uΩnk

)k≥1 ⇀ u∗Ω ∈ L2(Ω), if k −→∞.

Passing to the limit when k −→∞ and using weak convergence, we get the following formulation∫
R2N

(u∗Ω(x)− u∗Ω(y))(ϕ(x)− ϕ(y))

| x− y |N+2s
dxdy =

∫
Ω

f(x)ϕ(x)dx, ∀ϕ ∈ Ds,2(Ω) (25)

which is the weak formulation of the following problem(−∆)su∗Ω = f in Ω

u∗Ω = 0 in RN \ Ω.

Finally by taking ϕ = uΩnk
in (24), we have

lim

(∫
R2N

| (uΩnk
(x)− uΩnk

(y)) |2

| x− y |N+2s
dxdy

)
= lim

∫
Ωnk

uΩnk
f(x) =

∫
Ω

f(x)u∗Ω =

∫
R2N

[u∗Ω(x)− u∗Ω(y)]2

| x− y |N+2s
dxdy.

In the other hand, we have∫
R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]2

| x− y |N+2s
=

∫
R2N

[(uΩnk
(x)− uΩnk

(y))]2

| x− y |N+2s

−2

∫
R2N

(uΩnk
(x)− uΩnk

(y))(uΩ(x)− uΩ(y))

| x− y |N+2s
+

∫
R2N

[(uΩ(x)− uΩ(y))]2

| x− y |N+2s
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Then taking the limits in the right hand side after equality, as k −→∞

lim
k−→∞

(∫
R2N

[(uΩnk
(x)− uΩnk

(y))]2

| x− y |N+2s
− 2

∫
R2N

(uΩnk
(x)− uΩnk

(y))(uΩ(x)− uΩ(y))

| x− y |N+2s
+

∫
R2N

[(uΩ(x)− uΩ(y))]2

| x− y |N+2s

)
= 0.

From which have∫
R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]2

| x− y |N+2s
= 0.∫

R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]2

| x− y |N+2s
=

∫
R2N

(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))

| x− y |N+2s
= 0∫

Ωnk

f
(
uΩnk

− uΩ

)
= 0.

Then
uΩnk

(x)− uΩnk
(y) L2
−−−−→uΩ(x)− uΩ(y)

uΩnk
L2

−−−−→uΩ

so,
uΩnk

Ds,2

−−−−−−→uΩ

Finally

lim
k−→∞

J(Ωnk) =
C(N, s)

2

∫
RN

∫
RN

| uΩnk
(x)− uΩnk

(y) |2

| x− y |N+2s
dxdy

= J(Ω) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |2

| x− y |N+2s
dxdy = m

We can conclude that there is an open Ω∗ which minimizes J and Ω∗ ∈ Oε

3.3. Shape Derivative

Let Ω be a bounded open set of class C2. For t ≥ 0, let Ωt = φt(Ω), where for all t, φt associated for V is a diffeomorphism
of RN , N ≥ 2 and satisfies the following properties:

φ̇0 = V, | det(∇(φt)) |= j(t, x),
dφt
dt

= −V, | det(∇φ−1
t |= j(−t, x).

For all V ∈ C1 ∩W 1,∞(RN ). Let uΩt be the solution to the following problem{
(−∆)suΩt = f in Ωt
uΩt = 0 in RN\Ωt.

(26)

Consider also then function (2) defined in Ωt, by

J(Ωt) =
C(N, s)

2

∫
RN

∫
RN

| uΩt(x)− uΩt(y) |2

| x− y |N+2s
dxdy. (27)

where uΩt is solution to (26).
In this part we want to calculate the shape derivative of the functional (27). The calculation of shape derivative of the functional

requires the knowledge of the shape and the material derivative of the solution uΩt . In what follows, we recall some definitions
and properties usefull for the following

Definition 3.1. We transport the situation on the domain fixed by the change of variables defined by the following
transformation : Id + tV . We look at the differentiability of t −→ ut ◦ (Id + tV ). If this function can be differentiated into
t = 0, we will be able to define the derivative of ut where u̇(Ω, V ) and this derivative is called material derivative.

Definition 3.2. Let ω ⊂ Ω an open fixed ( strictly included in Ω ). So by definition we have ω ⊂ Ωt, for any t small enough.
Therefore the function ut is well defined on ω and it is convenient to look at the limit of the differential quotient:

lim
t−→0

ut − u
t

.
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If this limit exists for all ω, we define a function in the whole domain Ω noted u′ where u′(Ω, V ) and u′ is called the form
derivative of u.

We have the following theorem.
Theorem 3.3. Let Ω ⊂ R2 be an open set of class C2, and Ωt = φt(Ω) as below. Then the function J defined by (27) is

differentiable and we have(
dJf (Ωt)

dt

)
t=0

= C lim
k−→∞

∫
R2×R2

[
u0(x)u̇0(y)

(
χk(x+ y) + χk(x− y)− 2χk(x)

|y|2+2s

)]
dxdy

where u0 is solution to (26) and u̇0, the shape derivative of u0 is solution to{
−∆su̇0 = 0 in Ω
u̇0 = 0 on ∂Ω.

(28)

Proof. From the Theorem 3.1, the unique minimizer of the functional

J(u) =

∫
R2

∫
R2

|uΩ(x)− uΩ(y)|2

|x− y|N+2s
dxdy

satisfies the following variational formulas:

< u, v >Ds,2(Ω)×Ds,2(Ω) −
∫

Ω

fvdx = 0 ∀v ∈ Ds,2(Ω).

Then, for v = u we have ∫
R2

∫
R2

|uΩ(x)− uΩ(y)|2

|x− y|N+2s
dxdy =

∫
Ω

fvdx

So to study the functional (27) is equivalent to study the functional J defined by

J(Ωt) =

∫
Ωt

futdx

Let vt = utoφt then vt = utoφt =⇒ vtf = utoφtf and vtfoφt = utoφtfoφt =⇒ vtfoφt = ut(φt)f(φt).
So, we have vtfoφt = (utf)(φt) and (utf)(φt) = vtfoφt. Then, the functional becomes∫

Ω

vtfoφt(y)j(t, y)dy =

∫
Ω

(utf)(φt)(y)j(t, y)dy =

∫
Ωt

fut

Jf (Ωt) =

∫
Ωt

vtfoφt(y)j(t, y)dy

and the functional J(Ωt) becomes

J(Ωt) =

∫
Ω

vtfoφt(y)(y)j(t, y)dy

Since vt ∈ Ds,2 is differentiable, then t→ J(Ωt) is differentiable for t in a neiborhood of zero. Using Hadamard formula, we
get, (dJf (Ωt)

dt

)
t=0

=

∫
Ω

(v̇0f + v0(V.∇f + fdivV )).(
dJf (Ωt)

dt

)
t=0

=

∫
Ω

v0div(fV ) +

∫
Ω

v̇0f.

For k ∈ N large enough, we define χk ∈ C∞0 (R2) by χk(x) = χ(kr), where χ ∈ C∞(R) and χ(ρ) = 0 for ρ ≤ 1, χ(ρ) = 1
for ρ ≥ 2. Since u0 = v0, we have:(

dJf (Ωt)

dt

)
t=0

= lim
k−→∞

(∫
R2

χku0div(V f) +
d

dt

[∫
R2

ut(fχk)oφ−1
t j(−t, .)

]
t=0

)

For fixed k and for t in a neigbourhood of zero, there exists a compact set Kk such that Kk ⊂ Ω and suppχkoφ−1
t ⊂ Kk.
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Since u̇t ∈ L∞t (L1
x), we can use the chain rule and write :

d

dt

[∫
R2

ut(fχk)oφ−1
t j(−t, .)

]
t=0

=

∫
R2

(u̇0fχk − u0fV.∇χk − u0χkV.∇f − u0χkfdivV )

we have :(
dJf (Ωt)

dt

)
t=0

= lim
k−→∞

∫
R2

χku0div(V f) +

∫
R2

(u̇0fχk − u0fV.∇χk − u0χkV.∇f − u0χkfdivV )(
dJf (Ωt)

dt

)
t=0

= lim
k−→∞

∫
R2

χku0div(V f) +

∫
R2

−u0V.∇χk − u0χkdivV +

∫
R2

u̇0fχk −
∫
R2

u0fV.∇χk(
dJf (Ωt)

dt

)
t=0

= lim
k−→∞

(∫
R2

χku0div(V f) +

∫
R2

−u0V.∇χk − u0χkdivV

)
+ lim
k−→∞

(∫
R2

u̇0fχk −
∫
R2

u0fV.∇χk
)

(
dJf (Ωt)

dt

)
t=0

= lim
k−→∞

(∫
R2

u̇0fχk −
∫
R2

u0fV.∇χk
)

With the definition of χk we can prove that there exists C > 0 thus that:∣∣∣∣∫
R2

u0fV.∇χk
∣∣∣∣ ≤ C√

k

Such that we have: (
dJf (Ωt)

dt

)
t=0

= lim
k−→∞

(∫
R2

u̇0fχk −
∫
R2

u0fV.∇χk
)

Since (−∆)su0 = f on the support of χk, we have :∫
R2

u̇0fχk =

∫
R2

u̇0χk(−∆)su0 =

∫
R2

u0(−∆)s(u̇0χk)

Notice also that χk(−∆)s(u̇0) = 0.
Indeed, u̇t is smooth on Kk for t small enough. The integral formula makes sense and we have using the laplacian formulas

given in Lemma 2.4 :

(−∆)su̇0(x) = C

∫
R2

u̇0(x+ y) + u̇0(x− y)− 2u̇0(x)

|y|2+2s
dy

Then, we have

(−∆)su0 = C

[
d

dt

∫
R2

ut(x+ y) + ut(x− y)− 2ut(x)

|y|2+2s

]
t=0

dy = 0

we obtain: ∫
R2

u̇0fχk =

∫
R2

u0(−∆)sχku̇0

Then: (
dJf (Ωt)

dt

)
t=0

= C lim
k−→∞

∫
R2

u0(−∆)sχku̇0. (29)

It’s follows from Lemma 2.4 that

(−∆)sχku̇0 = C

∫
R2

u̇0(y)

(
χk(x+ y) + χk(x− y)− 2χk(x)

|y|2+2s

)
dy.

From this last formulas, (29) becomes(
dJf (Ωt)

dt

)
t=0

= lim
k−→∞

(
C

∫
R2×R2

u0(x)u̇0(y)

(
χk(x+ y) + χk(x− y)− 2χk(x)

|y|2+2s

)
dxdy

)
The functional used in our work corresponds to the energy functional relative to the fractional laplacian. In the case of Dirichlet

energy, the shape derivative is known, see A. Henrot and M. Pierre [14] and Dalibard and Gerad- Varet [12]. By following the
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proof of the previous theorem, the functional J can be written in the form

J(Ωt) =

∫
Ωt

futdx

Considering vt = utoφt, we have∫
Ω

vtfoφt(y)j(t, y)dy =

∫
Ω

(utf)(φt)(y)j(t, y)dy =

∫
Ωt

fut

and the functional J(Ωt) becomes

J(Ωt) =

∫
Ω

vtfoφt(y)(y)j(t, y)dy

Since vt ∈ Ds,2 is differentiable, then t→ J(Ωt) is differentiable for t in a neiborhood of zero. Using Hadamard formula, we
get easily, (dJf (Ωt)

dt

)
t=0

=

∫
Ω

(v̇0f + v0(V.∇f + fdivV )).(
dJf (Ωt)

dt

)
t=0

=

∫
Ω

v0div(fV ) +

∫
Ω

v̇0f =

∫
Ω

v0div(fV )−
∫

Ω

v̇0∆su0 =

∫
Ω

v0div(fV ) + v0∆su̇0

For s = 1
2 , as in the case where the operator is the Laplacian,

the shape derivative is known, see [12, 14]. Using the same
approach as in [12], we obtain also an expression of dJf (Ωt)

dt in
terms on ∂su0

∂n , i.e.(
dJf (Ωt)

dt

)
t=0

= −1

2

∫
∂Ω

(V · n)
∂su0

∂n
dσ,

giving the proof of Theorem 1.3. The idea is to use an
approximation of u0 and u̇0.

3.4. Optimal Conditions

In this section, we are interested to an optimal condition.
In other words, we look for the relation associated with the
optimal condition Ω and the Lagrange multiplier λ(Ω).

Theorem 3.4. Let Ω be the solution of the shape optimization
problem min{J(Ω, ω ∈ O} under the constraint uω solution
to (22).

Then, there exists a Lagrange multiplier λ = λ(Ω) such that

k (∂snuΩ)
2

+ λ(Ω) = 0, (30)

where k is a constant.
Proof. Suppose that Ω is a minimizer of J under the

contraint |Ω| = c, the theorem of Lagrange multipliers then
implies that there exists a constant λ such that for any group of
diffeomorphisms (φt)t∈R,

d

dt
(Jf (φt) + λ|φt|) = 0 for t = 0. (31)

Assume that (φt)t∈R is the flow associated with V ∈
C∞0 (R2). Then we prove that(

d|φt(Ωt)|
dt

)
t=0

=

∫
∂Ω

V.ndσ.

From (31), we obtain(
dJf (Ωt)

dt

)
t=0

= −λ
∫
∂Ω

V.ndσ.

In an other hand, From Theorem 1.3, we get(
dJf (Ωt)

dt

)
t=0

= k

∫
∂Ω

(∂snuΩ)
2
V.ndσ.

By making the two preceding expressions equal, we have
the following optimality conditions

k

∫
∂Ω

(∂snuΩ)
2
V.ndσ + λ

∫
∂Ω

V.ndσ

=

∫
∂Ω

[
k (∂snuΩ)

2
+ λ
]
V.ndσ = 0,

giving for all V,

k (∂snuΩ)
2

+ λ = 0.

Since V is arbitrary, we infer that ∂snuΩ is constant on Ω.
Moreover, since uΩ ≥ 0 on Ω, by maximum principle, ∂snuΩ

is positive.

4. Conclusion

In this work, we have presented a shape optimization
problem using a functional J dependent on the domain Ω
and uΩ solution of the Fractional Laplacian. We have used
some usual techniques to show an existence result of optimal
shape and we calculate the shape derivative of the problem
considered. Finally we found an optimality condition. It would
be interesting in future work to consider the same functional
under constraint−∆us+uq = 0 in in Ω, for 0 < s < 1, q >
1.
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